If the principal stresses in a plane stress problem, are σ1 = 100 MPa, σ2 = 40 MPa, the magnitude of the maximum shear stress (in MPa) will be
If the principal stresses in a plane stress problem, are σ1 = 100 MPa, σ2 = 40 MPa, the magnitude of the maximum shear stress (in MPa) will be
Right Answer is:
30
SOLUTION
In the case of 3-D analysis, maximum shear stress can be calculated as:
maximum of $\left[ {\frac{{{\sigma _1} – {\sigma _2}}}{2},\frac{{{\sigma _2} – {\sigma _3}}}{2},\frac{{{\sigma _1} – {\sigma _3}}}{2}} \right]$
And In the case of plane stress analysis, maximum shear stress can be calculated by,
${\tau _{{\bf{max}}}} = \frac{{{\sigma _1} – {\sigma _2}}}{2}$
where
σ1 and σ2 are principal stresses in a plane.
Calculation:
Given:
σ1 = 100 MPa
σ2 = 40 MPa
Now, In-plane stress analysis, we have
$\begin{array}{l} {\tau _{{\bf{max}}}} = \frac{{{\sigma _1} – {\sigma _2}}}{2}\\ \\ {\tau _{{\bf{max}}}} = \frac{{100 – 40}}{2} \end{array}$
= 30 MPa